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Abstract

Aerial surveys can efficiently monitor populations of large

animals in geographically extensive management units but are

time‐ and cost‐intensive. Biologists often design population

surveys to balance cost, spatial coverage, and precision in

estimates of population size. Demographic ratio data from

aerial surveys are an important component of population

monitoring and management, yet the error of ratio data

remains under‐appreciated, especially for low‐density popula-

tions. We quantified error in juvenile:female, male:female, and

young:mature male ratios from 177 helicopter surveys of

white‐tailed deer (Odocoileus virginianus) in 37 wildlife man-

agement units encompassing 3,269 km2 of semi‐arid grasslands

and brush in South Texas, USA, during 2011–2015. We

classified error (the % difference between the mean and the

limits of the confidence interval) of surveys as appropriate for

research‐based (≤25% error) or monitoring surveys (≤50%

error). Overall, error usually met criteria for monitoring surveys

but not for research‐based surveys; male:female (x̄ = 32%

error) and juvenile:female (x̄ = 37%) ratios had smaller errors

than young:mature male ratios (x̄ = 51%). As number of

detections increased, errors declined; minimum number of

detections for both components of a given ratio needed for

monitoring and research‐based surveys was about 30–40 and

150–185 at the 90% confidence interval and 45–60 and

210–230 at the 95% confidence interval, respectively. Accept-

able error to reliably detect changes in demographic ratios may

require greater survey effort or a different survey design

for low‐density populations. Furthermore, obtaining sufficient
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detections for acceptable error of male age structure estimates

may not be feasible. Error of demographic ratios is an

important consideration given their role in the design of

harvest plans, evaluation of the effects of management, and

tracking the effect of diseases, such as chronic wasting disease.

The high effort required to obtain acceptable error with ratio

data in areas with low deer densities indicates that helicopter

surveys may not be an ideal platform to investigate fine‐scale

variation in demographic data. Managers will have to consider

trade‐offs between expenses and variance of ratio data

collected from aerial surveys and whether obtaining acceptable

error with ratio data is feasible given deer densities and

detection probabilities are site‐specific.
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Aerial platforms are an efficient way to survey wildlife populations over spatially extensive areas (Samuel and

Pollock 1981, Bleich et al. 1994, Peterson et al. 2020). Data collected during aerial surveys are used to generate

estimates of abundance or population size, adult sex ratios, male age structure, and offspring recruitment rates; all

of these are used to direct management or conservation decisions (Gasaway et al. 1986, Zabransky et al. 2016). Sex

and age composition and recruitment, commonly expressed as ratios, are often used to assess population status

relative to management objectives. For instance, too few males relative to females may require changes in harvest

strategies (Ginsberg and Milner‐Gulland 1994). Aerial surveys may record age structure of males to quantify effects

of management strategies, such as antler point restrictions, intended to encourage survivorship from young to

mature ages (Bender and Miller 1999, Biederbeck et al. 2001, Hansen et al. 2017) or control disease (Mysterud

et al. 2020, Conner et al. 2021). For example, chronic wasting disease, a fatal transmissible spongiform

encephalopathy, affects age and sex composition of populations; prevalence is higher in males and generally

increases in older males (Grear et al. 2006, DeVivo et al. 2017). Finally, juvenile:female ratios allow inferences about

population growth, density dependence, and habitat quality (Gaillard et al. 1998, Bowyer et al. 2014).

Population estimates derived from aerial surveys incorporate uncertainty because not all animals are seen

(Caughley 1977), signified by measures of variation (Pollock et al. 2006, Barker 2008). Precision of population

estimates influences the ability to detect changes in population sizes (Cochran 1977); however, ratio data are rarely

presented with measures of variation (Ricklefs 1997, Foley et al. 2016, Larter et al. 2017, Frenette et al. 2020).

Because of the high costs for flight time, populations are often surveyed once a year; surveys are rarely replicated

within a given year (Shupe and Beasom 1987). Therefore, the variation of ratio data must be estimated from a single

survey. Oftentimes, variation of a ratio is only considered well after the survey, such as for population modeling

(Monteith et al. 2015). When the variation of ratio data is unknown, it can be difficult to determine the effect of

harvest management strategies on population parameters (Sæther et al. 2003, Bender 2006).

White‐tailed deer (O. virginianus) are the most common and widespread species of large mammal in North

America (Heffelfinger 2011). In the United States, white‐tailed deer are the primary driver of revenue for

many state wildlife management agencies via sales of hunting licenses, and taxes on firearms and ammunition
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(Hansen 2011). White‐tailed deer are managed as a publicly owned, renewable natural resource over a range of

management intensities and harvest regimes (Adams and Hamilton 2011). Landowners and state agencies routinely

use aerial surveys for the management of white‐tailed deer populations (Beringer et al. 1998, Potvin et al. 2004),

particularly on rangelands in the southwestern United States (DeYoung et al. 1989, Peterson et al. 2020).

White‐tailed deer in semiarid rangelands are not migratory and occur in small groups (~3–5 deer/group;

DeYoung and Miller 2011). Helicopter‐based detection probabilities of white‐tailed deer in southern rangelands are

≤0.50 (DeYoung 1985, DeYoung et al. 1989, Peterson et al. 2020). These are lower than detection probabilities of

other species of ungulates, such as elk (Cervus canadensis) and mule deer (O. hemionus), that are often surveyed

where they aggregate on winter ranges (Samuel et al. 1987, Freddy et al. 2004, Phillips et al. 2019). The

combination of lower detection probabilities and smaller group sizes could influence the amount of survey effort

needed to obtain sufficient detections for ratio data. The number of detections is important because as sample size

(detections) increase, variation declines. The point when variation becomes acceptable is somewhat subjective and

represents a trade‐off between cost, logistics, and need for management. For instance, errors of ±15% (the

difference between the mean and the limits of the confidence interval) could be considered appropriate for

research‐based surveys, whereas errors of ±20–25% could be considered sufficient for intensive population

management (Eberhardt 1978, Terrestrial EcosystemsTask Force Resources Inventory Committee [TETFRIC] 2002).

Errors of ±50% would be appropriate for less‐intensive management or a general monitoring survey without any

specific research objectives (Eberhardt 1978, TETFRIC 2002). The recent emergence of chronic wasting disease in

white‐tailed deer and mule deer in Texas, USA (Texas Parks and Wildlife Department 2022) has brought increased

attention to population monitoring (Figure 1). The disease is fatal and poses serious long‐term implications for

management (Williams et al. 2002, Uehlinger et al. 2016, DeVivo et al. 2017), especially for populations in semi‐arid

regions, where population growth rate is low because of variable precipitation (Foley et al. 2016, DeYoung

et al. 2019, Islam et al. 2022).

To gain a better understanding of error in ratio data from white‐tailed deer in semi‐arid rangelands, we used

5 years of data collected during helicopter surveys from 37 wildlife management units (WMUs) on 3,269 km2 of

southwestern rangelands. Our objectives were to evaluate error of juvenile:female, male:female, and young:mature

male ratios; evaluate factors influencing error of these 3 ratios; and estimate number of detections appropriate for

monitoring surveys (≤50% error) and research‐based surveys (≤25% error). We predicted that low detection

probabilities, small group sizes, and relatively low densities (DeYoung 2011) of white‐tailed deer in southwestern

rangelands would generate error appropriate for monitoring surveys but not for research‐based surveys.

STUDY AREA

Our study took place on the privately owned King Ranch, which encompasses 3,340 km2 in Kleberg, Jim Wells,

Brooks, Kenedy and Willacy counties in South Texas, during 2011–2015. The ranch is divided into 4 non‐

contiguous divisions: Encino (424 km2), Laureles (1,043 km2), Norias (974 km2), and Santa Gertrudis (826 km2).

Ranch activities balance livestock production with wildlife management, and the ranch derives additional income

from leasing trespass rights for hunting. Each division is further partitioned into 4 to 13 WMUs (n = 37); eachWMU

is composed of 1–8 livestock pastures, which are surrounded by 1.2‐m net‐wire fences. Most WMUs had cattle

present; stocking rates were dependent on habitat and environmental conditions. Average WMU size is 81.2 km2

(range = 27.5–194.0). Harvest is relatively conservative and focused on adult males (Foley et al. 2022), resulting in a

robust male age structure. Harvest of females is low because of the influence of variable annual precipitation on

recruitment rates (Foley et al. 2016, DeYoung et al. 2019).

The King Ranch lies in theWestern Gulf Coastal Plain and SouthernTexas Plains Level III Ecoregions (Griffith

et al. 2004). Native fauna included white‐tailed deer, collared peccary (Pecari tajacu), coyote (Canis latrans),

bobcat (Lynx rufus), wild turkey (Meleagris gallopavo), and bobwhite quail (Colinus virginianus) along with exotic
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F IGURE 1 White‐tailed deer densities at the eco‐region level in Texas, USA. Thin black polygons indicate
counties containing properties that typically use aerial platforms to conduct surveys for white‐tailed deer. Thick
polygons indicate counties within chronic wasting disease (CWD) containment zones (Texas Parks and Wildlife
Department 2022).
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feral pig (Sus scrofa) and nilgai antelope (Boselaphus tragocamelus). Dominant vegetation communities vary

because the transition from coastal sand to interior loamy sand results in a change from coastal grasslands to

inland brush communities. The Laureles, Santa Gertrudis, and Encino divisions are primarily Tamaulipan

thornscrub, whereas Norias is more diverse, with coastal grasslands and sand dunes on the coast that transition

into live oak (Quercus virginiana) mottes in the center portion. West of the live oak mottes, the habitat transitions

into mesquite (Prosopis glandulosa) and huisache (Vachellia farnesiana) savannas. Parent et al. (2016) provided

additional details. The herbaceous community contains native grasses and forbs interspersed with grasses

introduced for their grazing value. Average temperatures are 22.3°C (National Oceanic and Atmospheric

Administration [NOAA] 2021) with high temperatures typically observed during August (36.4°C) and low

temperatures (18.9°C) during January. Annual rainfall averages 65 cm (NOAA 2021) but is highly variable

(CV > 20%; Norwinen and John 2007) with peaks during May and September (Fulbright and Ortega‐S 2006).

METHODS

Data collection

During 2011–2015, King Ranch personnel conducted surveys each September prior to the onset of hunting season

in October. During this time of the year, juveniles (i.e., fawns) are approximately 3 months old and most adult (≥1.5

years old) males have hardened antlers. Personnel conducted surveys using a 4‐seat helicopter (R44, Robinson

Helicopter Company, Torrance, CA, USA) with 3 experienced observers in addition to the pilot. The survey protocol

was to fly parallel, fixed‐width transects (Figure 2) in the helicopter at 56–64 km/hour, approximately 15m above

F IGURE 2 Divisions of King Ranch (left) and an example of aerial survey transects for white‐tailed deer on a
wildlife management unit (WMU) in South Texas, USA (right), 2011–2015. This WMU contained 3 livestock
pastures and each pasture was surveyed independently (thin lines) at 25% coverage (800‐m spacing between
transects); we pooled results for analysis.
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ground level (AGL). Observers count deer out to a visually estimated 91m on each side of the aircraft. Transects

were spaced to cover either 25% (800‐m spacing between transects) or 50% (400‐m spacing) of each WMU,

depending on management objectives. The pilot used a global positioning system (GPS) navigation unit (Garmin

Nuvi, Garmin International, Olathe, KS, USA) preloaded with transects created in ArcMap (Esri, Redlands, CA, USA).

Observers counted deer and classified individuals by age class (juvenile or adult) and sex (adult male or adult female;

DeYoung et al. 1989). They further classified adult (≥1.5 years old) males based on a combination of body

characteristics and antler size as either young (1.5–2.5 years old), middle‐age (3.5–4.5 years old), or mature

(≥5.5 years old). Previous studies using marked deer indicated that experienced observers could place males into

these broad age categories with acceptable accuracy (DeYoung et al. 1989). Observers recorded tracklogs and

animal detections (group size, sex, and age) within the 182‐m swath of the transect using custom CyberTracker

applications (CyberTracker Conservation, Cape Town, South Africa) programmed into handheld tablet devices

equipped with an internal GPS receiver (Schnupp et al. 2013). After surveys, we combined data stored within

tablets for analysis. Surveys for each WMU typically were completed in 1–2 days unless interrupted by inclement

weather or mechanical delay.

Data analysis

Observers conducted surveys at the pasture level and we pooled survey results of pastures belonging to the same

WMU; thus, we analyzed data for each WMU for each year surveyed (Figure 2). We investigated trends in 3

important demographic ratios (R):

R J J A

R A A

R A A

juvenile:female, ˆ = ( + )/

male:female, ˆ = /

young:mature male, ˆ = /

f m f

m f

m m

J:F

M:F

YM:MM 1−2 ≥3

where Jf, Jm, Af, and Am are random variables that represent counts of juvenile females, juvenile males, adult

females, and adult males, respectively. For simplicity, we combined the middle‐age and mature male age categories

and termed both categories as mature (Am≥3). Thus, the ratio of young:mature males is 1.5–2.5 years old:≥3.5 years

old. Further, using the ratio of males 1.5–2.5 years old:≥3.5 years old reflects a situation of surveying for potential

changes in male age structures due to chronic wasting disease, where prevalence is typically higher in ≥3.5‐year‐old

males (Miller and Conner 2005, Grear et al. 2006). For each WMU‐year survey, we calculated 90% and 95%

confidence intervals (CI) for each of the 3 ratios.

There are 2 main approaches to estimate variance of ratio data from a single survey with no marked animals.

The Bowden estimator (Bowden et al. 2000) uses differences in ratios among groups of animals encountered during

surveys to estimate variation. Because the Bowden estimator uses groups, not individuals, as the sampling unit, the

time and effort needed to obtain a reasonable sample size is often too high (Morrison and Kauffman 2014). An

alternative method is to use individuals as the sampling unit. For instance, the Czaplewski estimator was developed

for estimates of variance for ratio data collected during aerial surveys for mule deer and elk in the western United

States (White et al. 2001, Morrison and Kauffman 2014, Monteith et al. 2015). The Czaplewski estimator assumes a

normal distribution in ratio data and may not perform well when ratios are skewed; thus, different measures of

variance may be more appropriate (Hagen and Loughin 2008). We used log‐transformed ratios, ln(R̂̂), for analysis

(Hagen and Loughin 2008, Conner and McKeever 2020) and generated lower and upper CI (Lln, Uln) by first

calculating the standard error of each ratio:

R
J J A

SE[ln( ˆ )] =
1

+
+

1
J F

f m f
:
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R
A A

SE[ln( ˆ )] =
1

+
1

M F
m f

:

R
A A

SE[ln( ˆ )] =
1

+
1

YM MM
m m

:
1–2 ≥3

then the lower and upper CI, where r is the sample ratio:

L U r z R, = ln( ) ± SE[ln( ˆ)]ln ln ɑ/2

where zɑ/2 is the upper ɑ/2 percentile of the standard normal distribution (Hagen and Loughin 2008). We

exponentiate to obtain:

L UCI = [exp( ), exp( )].ln ln

We examined 90% and 95% CIs because management or research objectives may vary and one may opt for a

more conservative or strict CI (Czaplewski et al. 1983, Hagen and Loughin 2008).

We generally followed recommendations by Eberhardt (1978), and the British Columbia Terrestrial

Ecosystems Task Force (TETFRIC 2002), and defined survey error as the percent difference between the mean

and the limits of the confidence interval. We considered surveys to be appropriate for research activities when

errors were ≤25%. We considered surveys with errors of ≤50% to be appropriate for a monitoring survey,

whereas we classified surveys with >50% errors as uninformative. We calculated frequency of all surveys that

produced errors appropriate for research, monitoring, or uninformative surveys for each of the 3 ratios. We

also used linear regressions to examine factors that influenced errors of ratio estimates. Error was the

response variable, and standardized (mean = 0 and SD = 1) uncorrected deer density (number of deer detected

divided by area surveyed, deer/km2), survey coverage (%), and WMU size (ha) were the predictors. We

included year of survey as a factor variable in the model to determine whether error was consistent

among years. During 2011–2015, 2012 was a drought year; thus, we used 2012 as the reference level because

sample size for juvenile:female ratios could be greatly reduced given the strong association between

rainfall and juvenile recruitment (DeYoung et al. 2019). Lastly, we conducted a post hoc analysis to evaluate

how many ratio‐specific detections were needed to meet 25% and 50% errors at 90% and 95% CI. We

conducted all analyses and data management in R (R Core Team 2020). Specific R packages included ggplot2

(Wickham 2016), reshape2 (Wickham 2007), dplyr (Wickham et al. 2021), sjPlot (Ludecke 2021), and sjmisc

(Ludecke 2018).

RESULTS

We omitted records for 6 WMU‐years from analysis because these records appeared to be potential high‐leverage

outliers: 2 surveys with a high male:female ratio (>2.2), 2 surveys with high young:mature male ratio (>2.5), and 2

surveys when aWMU was flown at 100% coverage. Additionally, 9 WMU‐year surveys did not have any detections

for either the numerator or the denominator of a ratio, which left us with 177 WMU‐year surveys to analyze.

Juvenile:female ratios averaged 0.35 (SD = 0.21, range = 0.04–1.10). Average male:female ratio was 0.53 (SD = 0.18,

range = 0.13–1.08) and ratio of young to mature males averaged 0.43 (SD = 0.25, range = 0.03–1.56). Detections

averaged 1.9 deer/group and uncorrected deer density averaged 6.3 deer/km2 (SD = 2.4, range = 0.9–13.2). Sizes

of WMU averaged 8,161 ha (SD = 3,786, range = 2,749–19,398). Coverage averaged 40.1% (SD = 11.7,

range = 15.3–61.7). None of the 3 predictors (coverage, WMU size, and deer density) were strongly correlated

(Pearson correlations ≤0.20).
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At the 95% CI level, ≤27% of ratios were considered to be appropriate for research‐based surveys for any

demographic measure, whereas the majority of ratios were considered to be appropriate for monitoring surveys

(Table 1). Almost half of young:mature male ratios were uninformative.

Distribution of ratio‐specific errors were not normal (Shapiro‐Wilk normality test P < 0.01); thus, we log‐

transformed errors for each ratio prior to conducting linear regressions to examine factors influencing error.

Overall, the results were very similar between models with 90% or 95% CI levels (Figure 3). The standardized

predictors in addition to years surveyed explained 82%, 90%, and 80% of the variation in error for juvenile:female,

male:female, and young:mature male ratios, respectively. There was an overall trend of WMU size having the largest

negative betas (i.e., lower error), followed by uncorrected deer density and survey coverage (Figure 3). At the 95%

CI level, 1 standard deviation increase in WMU size (3,782 ha) decreased error in ratios by 17–18% and 1 standard

deviation increase in deer density (2.4 deer/km2) decreased errors by 13–16% (Figure 4). Each unit increase in

coverage (1 SD = 11.7%) decreased errors by 11–12%. Relative to year 2012, a drought year, error of male:female

and young:mature male ratios were variable among years, whereas juvenile:female ratios consistently had lower

error (Figure 5). Errors in juvenile:female ratios were 12–25% lower during non‐drought years. Post hoc evaluations

indicated that at the 95% CI level, 45–60 detections of both groups of a given ratio (e.g., number of male and female

detections for male:female ratio) were needed for a monitoring survey, whereas 210–230 detections were needed

for a research‐based survey (Figure 6). At the 90% CI level, 30–40 and 150–185 detections were needed for

monitoring and research‐based surveys, respectively (Figure 6).

DISCUSSION

Biologists often implement correction factors or survey methods that account for factors that cause undercounts of

population estimates; however, the error of ratio data is rarely considered (Hagen and Loughin 2008). This may be

because the effort to acquire acceptable error in ratio data may exceed the effort needed for generating population

estimates (Czaplewski et al. 1983). Error is largely a function of sample size, as increases in WMU size, uncorrected

deer densities, and coverage all reduced error. Given that a population is decomposed into 2 groups (e.g., juvenile

and adult females) or decomposed even further (male age structure), sample size needed for acceptable error in

ratio data may be much greater than what is needed for a simple population estimate. Error of demographic ratios is

an important consideration given their role in harvest plans and evaluation of the effects of management.

While obtaining 30–40 (90% CI) or 45–60 (95% CI) ratio‐specific detections for monitoring surveys were

feasible at the ranges of observed coverages and WMU sizes, the error associated with monitoring surveys are not

likely to produce detectable changes in ratio data. As a result, it would be difficult to determine the effect of

TABLE 1 Mean error (SD), and percent of surveys (n = 177) defined as appropriate for monitoring (≤50% error),
appropriate for research‐based uses (≤25% error), and uninformative (>50% error) for 3 ratios obtained from
helicopter surveys of white‐tailed deer in 37 wildlife management units during 2011–2015 in South Texas, USA.

CI Ratio Error SD Monitoring Research‐based Uninformative

95% Juvenile:female 0.37 0.13 84 15 16

Male:female 0.32 0.10 93 27 7

Young:mature male 0.51 0.15 52 1 48

90% Juvenile:female 0.33 0.12 90 31 10

Male:female 0.27 0.09 99 36 1

Young:mature male 0.45 0.15 69 5 31
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changes in harvest management or natural mortality. Obtaining sufficient detections of white‐tailed deer for

research‐based surveys may be difficult. White‐tailed deer have relatively low detection probabilities (~0.50;

DeYoung 1986, Peterson et al. 2020) in southwestern rangelands, likely because of their small group sizes (x̅ = 1.9

deer/group, this study). Other ungulates commonly surveyed aerially are more gregarious species that are often

surveyed when congregation occurs on winter ranges, resulting in greater detection probability (Table 2). For

instance, sightability of elk in Manitoba, Canada was highest during winter compared to other seasons (Vander Wal

et al. 2001) and detection probability of elk in South Dakota and Idaho, USA, increased with snow cover and group

size (Samuel et al. 1987, Phillips et al. 2019). Researchers have reported that species of ungulates in Tanzania with

relatively smaller body sizes and smaller group sizes were more likely to be missed during aerial surveys (Greene

et al. 2017).

Compounding the issue of relatively low detection probabilities is that densities of white‐tailed deer are

relatively lower in southwestern rangelands, generally <30 deer/km2 (after correcting for visibility and availability

bias; DeYoung et al. 1989, Peterson et al. 2020; Figure 1). Densities of white‐tailed deer in the more productive

midwestern and eastern areas in the United States range from 40–104 deer/km2 (Walters et al. 2016). Unlike

temperate regions, where productive habitat yields higher juvenile recruitment rates and relatively high population

F IGURE 3 Standardized beta coefficients (error bars = SE) from linear regression models examining factors
influencing errors at 90% and 95% confidence interval (CI) levels of juvenile:female, male:female, and young:mature
male ratios during helicopter surveys of white‐tailed deer in 37 wildlife management units in South Texas, USA,
2011–2015. All betas were statistically significant at P < 0.01; betas at P ≥ 0.05 are indicated by absent bars. COV =
survey coverage (%), DENS = uncorrected deer density (deer/km2), and SIZE = size of wildlife management area (ha).
We log‐transformed ratio data to meet normality assumptions; year 2012 was the reference level.
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densities, the semi‐arid environment of South Texas often results in consistently low population densities because

of marginally productive habitat combined with variable rainfall (DeYoung 2011). Therefore, it should not be

expected for deer densities in southwestern rangelands to appreciably increase to the extent that necessary survey

effort would be significantly reduced. Furthermore, extrapolating our findings to the remainder of Texas where

F IGURE 4 Relationship between ratio‐specific error (%) and survey coverage, deer density, and wildlife
management unit (WMU) size from helicopter surveys for white‐tailed deer in South Texas, 2011–2015.
JF = juvenile:female ratio, MF =male:female ratio, and YM= young:mature male ratio. Horizontal line indicates error
threshold appropriate for research‐based surveys (≤25%).

F IGURE 5 Boxplots of errors (%) from 95% confidence intervals (CI) of juvenile:female (JF), male:female (MF),
and young:mature male (YM) ratios obtained from helicopter surveys for white‐tailed deer in 37 wildlife
management units in South Texas, 2011–2015. Average JF error was highest during a drought year (2012) and
lowest during a wet year (2015).
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aerial surveys are commonly used (Figure 1) indicates that most of Texas, with the exception of the

Edwards Plateau and the Cross Timbers ecoregions, will require high survey effort because of comparable deer

densities. Coverage can certainly be increased to improve sample sizes but would increase costs and runs the risk of

double‐counting (Zabransky et al. 2016, but see Beasom et al. 1986).

Juvenile:female ratios, an index of productivity, were often sampled sufficiently to be considered

appropriate for monitoring surveys. Error of juvenile:female ratios were consistently lower relative to year

2012, dissimilar with male:female and young:mature male ratios (Figure 3). This pattern likely occurred because

of greater variation in juvenile:female ratios, influenced by variable rainfall in this semi‐arid environment (Ginnett

and Young 2000, Foley et al. 2016). Relatively higher juvenile:female ratios increased sample sizes during wet

years (2015), which in turn reduced errors (Figure 5). During drought years (such as 2012), when juvenile

F IGURE 6 Errors of ratio (%) at the 90% and 95% confidence interval level as it related to number of ratio‐
specific detections obtained during helicopter surveys for white‐tailed deer in 37 wildlife management units in
South Texas, USA, 2011–2015. JF = juvenile:female, MF =male:female, and YM= young:mature; numbers indicate
percent confidence interval level. Horizontal lines indicate error thresholds appropriate for monitoring surveys
(≤50%) and research‐based surveys (≤25%).

TABLE 2 Detection probabilities (p) of ungulate species commonly surveyed during aerial surveys.

Species (scientific name) p Reference (study area)

Pronghorn (Antilocapra americana) 0.64–0.66 Ward (2016) (Texas, USA), Jacques et al. (2014) (South Dakota, USA)

Dall's sheep (Ovis dalli dalli) 0.86–0.88 Udevitz et al. (2006) (Alaska, USA)

Moose (Alces alces) 0.57–0.69 Peters et al. (2014) (Alberta, Canada)

Elk (Cervus canadensis) 0.57–0.61 Samuel et al. (1987) (Idaho, USA), Phillips et al. (2019) (South
Dakota, USA)

Mule deer (Odocoileus hemonius) 0.11–0.87 Zabransky et al. (2016) (Texas, USA)

White‐tailed deer (O. virginianus) 0.47–0.55 Peterson et al. (2020) (Texas, USA), DeYoung et al. (1989)
(Texas, USA)
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recruitment rates are low, additional survey effort will likely be needed to obtain sufficient detections.

Furthermore, studies of marked individuals indicated that juvenile white‐tailed deer in southwestern rangelands

are undercounted by up to 20% relative to adults, likely because of their relatively small body size (Sullivan

et al. 1990). The undercount of juveniles indicates additional survey effort may be needed to achieve acceptable

errors if one assumed equal detection probabilities.

Errors in juvenile:female ratios are especially important, given that juvenile productivity is often the most

critical component explaining population growth for deer (Gaillard et al. 1998). In semi‐arid environments, deer

populations can be sensitive to additive mortality via harvest (DeYoung 2011, Foley et al. 2016); thus, harvest,

particularly of adult females, needs to be conservative. DeYoung et al. (2019) reported that juvenile:female ratios in

an experimental study on native southern rangelands that were <0.50 had an apparent population change of <1,

indicating a declining population. Therefore, errors in juvenile:female ratios must be sufficient to determine whether

a population can be harvested sustainably. Average error was 23% when ≥210 females and juveniles were detected

during a survey appropriate for research. Given the average observed juvenile:female ratio of 0.35, a potentially

declining population, the 95% CI would be 0.27–0.42, which would allow confirmation that the population likely is

not growing. Conversely, average error for monitoring surveys (60–100 detections) was 43%, which would produce

a 95% CI of 0.20–0.50. In this case, the upper CI is borderline to a non‐declining population, creating difficulties in

determining whether the population could absorb female harvest.

Almost all surveys yielded sufficient detections for monitoring male:female ratios; however, fewer male:female

ratios had acceptable error for research‐based surveys (36% at 90% CI and 27% at 95% CI). Deer managers often

strive for a balanced adult sex ratios (Downing 1981). Generally male:female ratios are considered to be balanced

when between 0.33–0.50, whereas ratios of ≤0.25 are considered to be skewed (Guynn and Hamilton 1986). With

≥200 detections from a research‐based survey, mean male:female ratio (0.53) error was 21% or a 95% CI of

0.42–0.64, which would enable one to determine whether male harvest needs to be adjusted. In the event when

sample sizes were appropriate for monitoring surveys (45–100 male and female detections), error averaged 39%.

This translates into a 95% CI of 0.32–0.74, which would still allow one to determine whether male:female ratios

were skewed but with lower resolution.

The young:mature male ratios required higher effort relative to the other 2 ratios; only 5% (90% CI) or 1% (95%

CI) of surveys obtained sufficient samples for a research‐based survey because only a few surveys detected ≥210

adult males. Average error of a monitoring survey when 50–100 males were detected during a survey was 40%,

which translates into a 95% CI of ±0.17 assuming a mean ratio of 0.43 (95% CI = 0.26–0.60). The wide CI overlaps

both a mature‐biased and young‐biased male age structure. The high error of young:mature males indicates that

survey effort will have to be very high, perhaps too high given the potential for male age misclassification (Leon

et al. 1987, Shupe and Beasom 1987, Bender et al. 2003, Conner and McKeever 2020). The relatively high error of

male age structure ratio is a consideration for evaluating effectiveness of management strategies designed to

increase male survivorship into older age classes (Bender and P. J. Miller 1999, Wallingford et al. 2017). Further,

chronic wasting disease has a disproportionate impact on older males, which has caused agencies to monitor age

structure as it relates to disease prevalence (Conner et al. 2021). Suppose chronic wasting disease increased

mortality of the mature male population by 10%, the mean ratio of young:mature male would change from 0.43 to

0.48; the average error of 40% (95% CI = 0.26–0.60) from a monitoring survey would not allow detection of the

change in the male age structure. Therefore, using helicopter surveys in southwestern rangelands may not be the

best approach to detect effects of the disease on male age structures, as it would be difficult to detect significant

changes.

In southwestern rangelands, search effort needed to monitor juvenile:female and male:female ratios, but not

young:mature males, via autumn helicopter surveys was reasonable given that 30–60 detections of each ratio‐

specific group were largely achievable with 25–50% coverage at the WMU scale. Coincidentally, obtaining 30–60

ratio‐specific detections would likely be sufficient to generate population estimates via distance sampling (Buckland

et al. 2015, Peterson et al. 2020) because the sum of all 3 sex‐age classes (juveniles, females, and males) would
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likely be >60–80 detections. Achieving ratio data with ≤25% error would be difficult at the observed WMU sizes at

25–50% coverage. Therefore, multi‐year trend analyses would be more appropriate to examine changes in ratio

data instead of making conclusions from a single survey (DeYoung et al. 1989). Alternatively, conducting repeated

aerial surveys may be a more viable approach because variation could be computed from the repeated estimates of

the ratios themselves; total flying time of repeated surveys may be less than a single high‐effort survey (Beasom

et al. 1986), which would reduce total costs; and repeated surveys can be conducted with relatively low coverages

(Beasom et al. 1986), which may reduce concerns of double‐counting at high coverages. Our findings that

acceptable error would require relatively high effort also has implications for quantifying changes in demographic

ratio data at smaller scales. Field studies evaluating the effect of cattle grazing, local precipitation, or prescribed

burns on demographic ratios will likely have to use alternative survey methods that generate sufficient samples for

satisfactory error.

Although the variation in demographic ratios has long been appreciated (Czaplewski et al. 1983), our results

highlight the lack of information regarding error of survey‐generated ratio data in the scientific literature

emphasized by previous studies (Hagen and Loughin 2008). Overall, reporting variation in ratio data from aerial

surveys appears to be species‐specific; variation is commonly reported for gregarious species rather than species

that occur in small groups. This tendency likely occurs because a high proportion of the population of gregarious

species can be simultaneously sighted in a defined area (Bender et al. 2003, Citta et al. 2014), such as elk or mule

deer at winter grounds or aggregations of marine mammals (e.g., hauled‐out Pacific walrus [Odobenus rosmarus]).

The error of ratio data appears to be better appreciated for species of upland birds, where other means of

population estimates are often unavailable (Hagen and Loughin 2008).

Ultimately, it is up to the manager or researcher how much effort to spend collecting ratio data given there is a

trade‐off in time and money versus variance of ratio data. Some authors have suggested that funds spent towards

conducting aerial surveys may be better spent elsewhere (Thomas 1998, Urbanek et al. 2012, Collier et al. 2013).

The combination of different sources of information into an integrated population model offers an alternative

approach to monitoring that appears promising for low‐density populations (Moeller et al. 2021). Regardless,

managers and scientists should quantify error of their demographic estimates to ensure that appropriate

management decisions are being made because errors will likely be site‐specific.

MANAGEMENT IMPLICATIONS

Error in ratio data obtained from helicopter surveys of white‐tailed deer in SouthTexas often did not have sufficient

power to detect meaningful changes. Furthermore, young:mature male ratios had the highest errors relative to

juvenile:female and male:female ratios. Therefore, modifying survey protocol, such as increasing survey coverage to

increase number of deer detections, would reduce errors. With the emergence of chronic wasting disease in South

Texas and elsewhere, generating acceptable errors in ratio data will play an important role in understanding effects

on population dynamics. For instance, given the high error in young:mature male ratios, it will be very difficult to use

helicopter surveys to monitor changes in male age structures due to chronic wasting disease at our observed deer

densities. We encourage managers to quantify and report errors to ensure that correct inferences are made on the

demographic ratio data. Our approach of evaluating errors can easily be used as a guideline by other managers to

determine how much survey effort is needed to obtain sufficient detections based on area‐specific deer densities

and detection probabilities.
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