
Articles

Developing Rigorous Monitoring Programs: Power and
Sample Size Evaluations of a Robust Method for
Monitoring Bird Assemblages
Jeremy A. Baumgardt,* Michael L. Morrison, Leonard A. Brennan, Tyler A. Campbell

J.A. Baumgardt
Texas A&M Natural Resources Institute, 578 John Kimbrough Boulevard, College Station, Texas 77843

Present address: Caesar Kleberg Research Institute, Texas A&M University-Kingsville, MSC 218, 700 University
Boulevard, Kingsville, Texas 78363

M.L. Morrison
Department of Wildlife and Fisheries Sciences, Texas A&M University, 534 John Kimbrough Boulevard, 2258 TAMU,
College Station, Texas 77843

L.A. Brennan
Caesar Kleberg Wildlife Research Institute, Texas A&M University-Kingsville, MSC 218, 700 University Boulevard,
Kingsville, Texas 78363

T.A. Campbell
East Foundation, 200 Concord Plaza Drive, Suite 410, San Antonio, Texas 78216

Abstract

Wildlife population monitoring programs are useful for identifying ecological impacts such as those from local
management actions and broader scale influences such as climate change. Increasing the number of species
monitored improves robustness of the program towards meeting monitoring objectives. In addition, monitoring at
multiple spatial scales should increase the sensitivity of the monitoring program. We developed a monitoring
program using unbiased estimates of occupancy at both local and regional scales, and unbiased estimates of
density for multiple species of birds with a single protocol. We used transects for sampling ~1,000-ha pastures that
consisted of twelve 200-m radius sampling points. We conducted 10-min point counts and recorded distance to
each observation using two independent observers, and resampled each of 30 transects over two study sites in
South Texas, for a total of four visits in each of 2015 and 2016. We estimated occupancy at two scales using the
multiscale model in Program MARK and estimated density using the Distance package in R. We predicted that it
would be possible to detect a 50% decline over 25 y with a power of 0.90 in regional occupancy, local occupancy,
and density for 36, 37, and 30 species, respectively, on our larger study site, and for 29, 33, and 12 species,
respectively, on our smaller study site using two independent observers and four visits. Our work shows it is
possible to monitor numerous species within a complex bird assemblage with a simple field protocol. For those
interested in implementing a long-term monitoring program that is sensitive to a wide range of potential stressors
at local and regional scales, we suggest considering multiscale occupancy and density monitoring for multiple
species of birds.

Keywords: bird assemblage; density estimates; distance sampling; multiscale occupancy modeling; multispecies
monitoring; power analysis; sample size

Received: April 23, 2019; Accepted: September 3, 2019; Published Online Early: September 2019; Published: Month
2019

Citation: Baumgardt JA, Morrison ML, Brennan LA, Campbell TA. 2019. Developing rigorous monitoring programs:

power and sample size evaluations of a robust method for monitoring bird assemblages. Journal of Fish and Wildlife

Management 10(2):480-491; e1944-687X. https://doi.org/10.3996/042019-JFWM-027

Copyright: All material appearing in the Journal of Fish and Wildlife Management is in the public domain and may be

Journal of Fish and Wildlife Management | www.fwspubs.org December 2019 | Volume 10 | Issue 2 | 480

https://doi.org/10.3996/042019-JFWM-027


reproduced or copied without permission unless specifically noted with the copyright symbol &. Citation of the

source, as given above, is requested.

The findings and conclusions in this article are those of the author(s) and do not necessarily represent the views of the

U.S. Fish and Wildlife Service.

* Corresponding author: jerbaumgardt@hotmail.com

Introduction

Properly designed wildlife monitoring programs in-
volving state variables such as abundance, density, and
occupancy are useful for identifying impacts such as
those from local and regional management actions as
well as broader scale influences such as climate change.
Monitoring data also enhance our ability to develop
appropriate plans for sustainable management. Selecting
species to monitor requires clearly defined objectives
(Yoccoz et al. 2001). Often, one species is used as a
surrogate to detect changes in another species or system
that are themselves difficult to observe (Caro and
O’Doherty 1999). However, the selection of an appropri-
ate surrogate is not straightforward and the effectiveness
of surrogates for meeting monitoring objectives may be
limited (Simberloff 1998; Andelman and Fagan 2000;
Lindenmayer et al. 2002).

The use of multiple species for detecting changes in
the larger system of interest is more robust than
monitoring a single species (Manley et al. 2004; Gregory
et al. 2005). In addition, management actions are just as
likely to impact nontarget species as they are to impact
target species, with impacts to nontarget species
potentially being negative; thus, monitoring multiple
species is advisable to detect broader implications of
management (Landres et al. 1988; Morrison et al. 1992).
However, it is reasonable to expect that as the number
and diversity of species included in the monitoring
program increase, so too will the resources required.
Birds represent an exception because a large number of
species inhabiting the same area, but representing a
wide range of life histories, can be monitored with a
single protocol. Data can be collected for species with a
wide range of diets and nesting strategies, and for both
residents and migrants, by using simple timed point
counts (Hutto et al. 1986).

Point counts alone produce data that are used as
indices to populations, which require certain assump-
tions (e.g., all individuals are equally detectable through
space and time). These assumptions are often likely
violated, biasing the index, which can substantially
compromise our ability to detect change through time
(Burnham 1981; Nichols et al. 2000). In addition to a
greater likelihood for bias, indices lack measures of
uncertainty and thus do not generally provide an
opportunity to evaluate statistical power (Anderson
2001; Rosenstock et al. 2002). A well-designed monitor-
ing program requires techniques that account for
detection bias and ensure that adequate effort is used

such that anticipated analyses will be sensitive enough
to detect a predetermined change in the state variable,
which can be calculated with a power analysis (Williams
et al. 2002; Legg and Nagy 2006). Without such
information, long-term monitoring efforts could result
in data with high variance and no ability to observe
trends.

By conducting multiple observations at individual
sampling sites (through time or with multiple observers),
point count data can be used to estimate detection
probabilities for generating unbiased estimates of
occupancy and associated uncertainty (MacKenzie et al.
2006). Estimates of uncertainty can then be used to
evaluate the power and sensitivity of the proposed
monitoring program. Likewise, recording distances of
observed birds from the surveyor allows for estimating
detection probability functions that can then be used to
generate unbiased estimates of density and associated
uncertainty (Buckland et al. 1993, 2001; Rosenstock et al.
2002). Similar to occupancy modeling, the estimates of
uncertainty associated with distance sampling can be
used to evaluate the power and sensitivity for monitor-
ing changes in population densities.

Measures of abundance or density are often consid-
ered the ideal state variable for population monitoring
(Williams et al. 2002). However, estimates of occupancy
have the potential to provide additional information
regarding spatial distribution, habitat relationships,
extinction risk, and metapopulation dynamics, and they
can generally be done effectively with less effort than is
required for abundance or density estimation (MacKenzie
et al. 2005, 2006). In addition, occupancy can be used as
a surrogate to monitoring density when sampling
appropriately sized spatial units (Holt et al. 2002; Efford
and Dawdon 2012). The appropriate sampling scale is
thus determined by the anticipated application of
occupancy-related metrics (i.e., the state variable).
Furthermore, different state variables may dictate
extremely disparate sampling scales; for example,
detecting changes in local population density (e.g.,
individual grazing pastures) requires sampling with a
much finer grain than detecting changes in proportion of
management units (e.g., pastures across a ranch)
occupied by the species. Pavlacky et al. (2012) presented
a hierarchical occupancy model that produced estimates
at both a regional and a local scale. Use of a multiscale
sampling design and modeling approach for estimating
occupancy allows the potential for monitoring two state
variables from different spatial scales. Collecting addi-
tional measurements of distance for each observation
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allows for the potential to monitor density as a third
state variable with the same dataset.

Others have considered estimating both state vari-
ables of occupancy and density with the same dataset
for monitoring a single species (Pederson et al. 2012;
Ferreguetti et al. 2017). To our knowledge, the use of
both occupancy and density estimates has not been
considered for a multispecies monitoring program. Our
objectives were to evaluate the level of power achieved
through multiple levels of sampling effort for monitoring
site occupancy at a local and a regional scale as well as
for monitoring density for numerous species of birds
from a single source of data. Our overall goal was to
provide recommendations to landowners and biologists
wanting to develop a rigorous monitoring program for
birds.

Methods

Study area
We collected data on the 60,752-ha San Antonio Viejo

(SAV; Jim Hogg and Starr counties, Texas, USA) and
10,984-ha El Sauz (ELS; Willacy and Kenedy counties,
Texas, USA) ranches that were owned by the East
Foundation and managed with the mission of support-
ing wildlife conservation, private land stewardship, and
other public benefits associated with cattle ranching. The
SAV was a matrix of woodland (73%), shrubland (18%),
grassland (5%), and early-seral vegetation (4%), with
approximately half of the ranch in the Coastal Sand Plain
Ecoregion and half in Texas-Tamaulipan Thornscrub
(Diamond and Fulbright 1990; Fulbright et al. 1990;
McLendon et al. 2013b, unpublished report). This region
had an average annual precipitation of 57 cm with mean
daily high temperature of 298C (National Oceanic and
Atmospheric Administration [NOAA] 2016). The ELS was
located 115 km to the east of SAV and adjacent to the
Laguna Madre along the Texas Gulf Coast. El Sauz was
36% woodland, 30% wetland vegetation, and 26%
grassland (McLendon et al. 2013a). Sixty percent of ELS
was in the Coastal Sand Plain ecoregion, with the
remaining 40% split evenly between the Laguna Madre
Barrier Islands and Coastal Marshes ecoregion and the
Lower Rio Grande Valley ecoregion (Diamond and
Fulbright 1990; Fulbright et al. 1990; Forman et al.
2009). Annual precipitation for this region was 66 cm,
with mean daily high temperature of 26.58C (NOAA
2016).

Data collection
Transect development. We collected data using the

point count method (Hutto et al. 1986) at a series of
points along walking transects that were generally
square or rectangular. We used a duration of 10 min
for each sample and designated 12 survey points per
transect such that each transect could be surveyed in its
entirety in a single day between 0.5 h before sunrise and
~1200 hours. We spaced observation points a minimum
of 400 m apart to minimize the likelihood of sampling

the same individuals from multiple locations. We
designed the transects in a circuit such that the last
point was 400 m from the first point, and we attempted
to use a square design (1,600 3 1,600 m) or rectangle
(1,200 3 2,000 m) for each transect to balance coverage
of our study area with independence among points
(Figure 1). We located transects a minimum of 400 m
from the edge of individual pastures or ranch boundar-
ies, which we assumed was sufficient to restrict
observations to pastures or ranches under survey. We
established 30 transects and determined the allocation
between the study areas according to ranch size. This
resulted in 25 transects on SAV and 5 on ELS. We located
one transect in each of 10 pastures along the northern
portion of SAV and located the remaining transects
randomly across the remaining areas (Figure 1).

Surveys. We began sampling in the third week of April
and resampled each transect every 2 wk for a total of
four visits each year, ending in the last week of June in
both 2015 and 2016. We used a form of double sampling
for our surveys where two observers collected data
simultaneously, but independent of each other. Upon
reaching each point, each observer waited 2 min before
conducting the surveys to allow birds to settle after
initial disturbance from entering the observation point
(Rosenstock et al. 2002). At each point, both observers
independently recorded all birds observed by sight or
sound (Hutto et al. 1986) within 200 m and used a
rangefinder to estimate distance for each detection. Birds
that did not land during a survey (flyovers) were not
assigned a distance; we did not use these data for our
analyses. Observers recorded all individuals seen, includ-
ing those also heard as visual observations; all others
were recorded as aural observations. Once observers
completed the survey at a point, they immediately
walked to the next point, with the aid of a hand-held
global positioning system unit, and repeated the process
until all 12 points had been surveyed.

Statistical analysis
Occupancy estimation. We used our data to generate

estimates of occupancy and associated variance using
the multiscale model in Program MARK (White and
Burnham 1999; Nichols et al. 2008). Occupancy is defined
as the proportion of sites occupied by a particular
species regardless of its abundance (MacKenzie et al.
2006). The multiscale model produces estimates of
occupancy at a regional (large) scale (W) as well as at a
local (small) scale (h; Pavlacky et al. 2012). The estimate
for W can be interpreted as the proportion of transects
that are occupied (a transect is occupied if at least one
survey point within the transect is occupied), where h
can be interpreted as the proportion of survey points
within a transect that are occupied, given that the
transect is occupied. At the scale that we collected data,
W is a valuable metric for detecting changes in species’
distributions relative to management units (e.g., the
proportion of ~1,000-ha pastures that are occupied by

Rigorous Monitoring for Bird Assemblages J.A. Baumgardt et al.

Journal of Fish and Wildlife Management | www.fwspubs.org December 2019 | Volume 10 | Issue 2 | 482



the species). The h parameter is potentially influenced by
species territory size, local population density, and
habitat heterogeneity (Pavlacky et al. 2012). At our scale
of data collection, h is useful for detecting changes in
species density within transects that are occupied (e.g.,
proportion of 200-m radius circles that are occupied by
the species within occupied pastures).

We used the detection histories from individual points
within a transect as our primary samples, and data from
two observers and repeat visits to a point as our
secondary samples. We assumed occupancy on both
spatial scales would vary between the two sites and
years, so we only considered models with terms for ranch
and year in both W and h. The probability that an
observer detected a species at a particular point during a
particular survey (p) partially depends on the activity of
individual birds present. It is well established that birds
of many species change behavior such as singing rate
through the day (Robbins 1981) as well as through the
breeding season (Slagsvold 1977). Thus, we also consid-
ered models that included terms that allowed p to vary

through the season or through time within a day. We
included a term that allowed p to vary linearly with the
order we conducted our surveys as a proxy for time of
day. We also considered models that included a
quadratic term for survey order to model a nonlinear
relationship between p and time of day. To model
seasonal variation, we considered models with a term
that allowed p to vary with the order of sampling
occasions. In addition, we considered models with a
quadratic term for occasion to model a nonlinear
relationship between p and season as well as additive
models with linear terms for both order of survey and
occasion. In addition to these six models, we included a
model with no terms to ensure we were not overfitting
models to the data (Table 1). We used Akaike’s
Information Criterion adjusted for small sample sizes
(AICc) to compare model fit and used the estimates from
the most parsimonious model for our power analyses
(Burnham and Anderson 2002; Arnold 2010).

In addition to considering the complete set of data, we
generated estimates using all four occasions with data

Figure 1. Location of point count transects and configuration of survey locations (dots) within each transect where we surveyed
birds on the San Antonio Viejo (SAV) and El Sauz (ELS) study sites in South Texas, USA, in 2015 and 2016.
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from a single observer randomly selected from both
observers to simulate occupancy estimates that would
result from approximately half of the field effort. From
our list of observations, we attempted to estimate
occupancy for a species for a given year if we recorded
a minimum of 60 total observations across both study
sites with the given effort, with at least 15 observations
per study site. If we made 60 observations of a species in
a given year, with only 10 observations from one of the
study sites, we excluded parameter estimates based on
these data from our power analysis. We selected these
conservative threshold values to coarsely remove data-
sets that we expected to be insufficient for providing
parameter estimates based on our experience.

Density estimation. We estimated density of individual
species using the distance sampling framework (Buck-
land et al. 2001, 2015) with the Distance package (Miller
et al. 2019) in R (R Core Team 2017). This method uses
the records of detections for a particular species, along
with estimates of the distance of each observation to fit a
detection function to each species that estimates the
relationship between probability of detection and
distance from the observer (Buckland et al. 2001). This
information is then used to correct the counts for
individuals missed, providing an unbiased estimate of
density. By including multiple observations from individ-
ual points, additional data are used to improve precision
of the density estimates without violating model
assumptions (Rosenstock et al. 2002).

We used the same observations from the occupancy
estimation, coupled with the estimated distance for each
observation, to generate estimates of density of individ-
ual species independently for each year of the study.
Birds that are observed at great distances where the
probability of detection is low can make estimating the
detection function difficult and are of little value for
estimating density (Buckland et al. 2001). Based on a
preliminary analysis of our data, we assumed detection
probability beyond 165 m for any species was ,10%;
thus, we used an initial truncation distance of 165 m for
all datasets, excluding all observations recorded beyond
this distance from our density estimation. We assumed

the densities of a particular species would differ between
ranches; we used multiple-covariate distance sampling
with ranch as the covariate and fit two models to the
truncated data (Buckland et al. 2015). The two models
were a half-normal key function and a hazard rate key
function. The multiple-covariate distance sampling pro-
cedure pools information between the strata used as
covariates to define the shape of the detection function;
yet, it allows variation in the detection probability
among strata via a scale parameter (Marques et al.
2007). Rosenstock et al. (2002) provide guidelines of 60–
100 observations for generating density estimates with a
coefficient of variation of 0.15 and Buckland et al. (2001)
recommend minimum sample sizes for point counts of
75–100 observations. Thus, we limited our analysis of
distance sampling to species for which we had a
minimum of 100 observations across both study sites
in a given year. If fewer than 15 of these observations
were made at a single ranch, we removed them from our
dataset and attempted to estimate density for the other
study site with the remaining data using conventional
distance sampling without the site covariate (Buckland et
al. 2015).

We identified the best model for each dataset for a
single species in a single year based on AICc values. We
created a histogram of the observed data with break-
points that reduced bias from binning by combining
commonly rounded distances with the range of distanc-
es these observations likely occurred; we used the
following breakpoints: 0, 22.5, 37.5, 62.5, 72.5, 87.5,
112.5, 122.5, 135, and 165 m. We instructed our
observers to record exact distances when possible,
rather than assigning observations to distance bins.
However, binning still occurs when specific distances are
assigned to observations more frequently than others
(e.g., 50 m) and is inevitable when observations are
commonly based on calls where the location of the
individual animal cannot be visually confirmed, as is
typical of most bird surveys (Buckland et al. 2015). We
then overlaid the line of the predicted density function
from the top-supported model over the histogram of
observations in our bins and visually identified the
distance bin at which the detection probability dropped
below 10–15% (Buckland et al. 2001). We used the lower
limit of this distance bin as the new truncation distance
for individual datasets and refit the best model as before
to generate a final estimate of density and associated
standard error (SE) for use in our power analysis. Again,
we repeated the previous steps for both years of data
using observations from all four occasions with only the
observations from a single observer per visit to generate
estimates that would result from approximately half of
the field effort.

Power analysis
We used two different levels of sensitivity that define

an effect size and time frame as a basis for evaluating the
power to detect changes in occupancy and density. The

Table 1. Set of candidate models we fit to individual species’
datasets collected from El Sauz and San Antonio Viejo Ranches,
South Texas in 2015 and 2016 to estimate regional occupancy
(W), local occupancy (h), and the probability of detection (p)
and their corresponding number of parameters (k). A (.)
indicates we did not include covariates for the parameter. We
included model {W (.), h (.), p(.)} in each candidate set to ensure
we were not overfitting models to the data.

Model k

W (Year þ Ranch), h (Year þ Ranch), p (Time þ Date) 9

W (Year þ Ranch), h (Year þ Ranch), p (Time2) 9

W (Year þ Ranch), h (Year þ Ranch), p (Time) 8

W (Year þ Ranch), h (Year þ Ranch), p (Date2) 9

W (Year þ Ranch), h (Year þ Ranch), p (Date) 8

W (Year þ Ranch), h (Year þ Ranch), p (.) 7

W (.), h (.), p(.) 3
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least sensitive level we considered involved detecting a
50% decline over 25 y, which has been adopted as a
standard for the Partners in Flight program to identify
most vulnerable species (Rich et al. 2004) and the North
American Breeding Bird Survey to detect trends (Sauer
1993). The International Union for Conservation of
Nature uses the criterion of a 30% decline over 10 y to
define a population as vulnerable (International Union
for Conservation of Nature and Natural Resources/
Species Survival Commission Red List Programme
2001); we used this as our second level of sensitivity.

We estimated the power to detect trends in occupan-
cy and density based on our two levels of sensitivity
using the power.trend function in the emon package
(Barry and Maxwell 2017) in R (R Core Team 2017). We
began by simulating linear, declining trends for both
sensitivity targets with the estimates of occupancy or
density from the corresponding top supported models
as the starting points and the model estimated SE as the
standard deviation (Gibbs 2000). We then fit a regression
line to the projected estimates to test for evidence of a
trend using a¼ 0.05. We repeated these steps for a total
of 10,000 simulations and calculated power as the
proportion of the simulations for which a trend was
detected with a p less than a. We estimated power for
monitoring W, h, and density at each site with our two
levels of sensitivity separately for 2015 and 2016 and
repeated these steps with data simulating a 50%
reduction in field effort for each species’ dataset that
met our minimum threshold for generating estimates.

Results

Observations
We conducted 2,880 point counts (2,400 on SAV and

480 on ELS) in each of 2015 and 2016, resulting in 76,857
observations of 115 species, excluding unconfirmed
species and raptors. We considered a species confirmed
if we had at least two observations over both years of
our study. We excluded raptors because the majority of
observations for these species were flyovers and thus not
appropriate for our analyses. We had a total of 46 species
with a minimum of 60 total observations from both

study sites and a minimum of 15 observations for a
single ranch in a single year with our complete set of
data (Data S1, Supplemental Material). We attempted to
estimate occupancy for 34 species and density for 31
species on the ELS site by using detections from both
observers (eight occasions; Table 2). With these data, we
also attempted to estimate occupancy for 42 species and
density for 34 species on the SAV site (Table 2). When we
considered data from a single observer (four occasions),
we were left with 27 and 25 species that met our criteria
for estimating occupancy and density, respectively, on
ELS and 33 and 30 species for estimating occupancy and
density, respectively, on SAV (Table 2).

State variable estimates
Occupancy. Our W estimates ranged from 1.0, for

approximately one-third of all species’ datasets that we
analyzed, to a low of 0.21 (SE ¼ 0.08) for wild turkey
Meleagris gallopavo on SAV based on 26 observations (69
total observations) recorded in 2015 with eight occasions
(Table S1, Supplemental Material). Our lowest estimates
of h was 0.01 (SE ¼ 0.01) for red-winged blackbird
Agelaius phoeniceus on SAV based on 15 observations
from SAV and 137 total observations from four occasions
in 2015 (Table S2, Supplemental Material). We had two
instances where h¼ 1; mourning dove Zenaida macroura
on ELS based on 274 observations (1,469 total observa-
tions) from four occasions (Table S3, Supplemental
Material), and western meadowlark Sturnella neglecta
on ELS based on 101 observations (106 total observa-
tions) from eight occasions (Table S4, Supplemental
Material).

Density. Our lowest density estimate was for Cassin’s
sparrow Peucaea cassinii on ELS (0.8 individuals per km2,
SE ¼ 0.31), and was based on an average of 1,301.5
observations per y for both sites and 19 site specific
observations within a truncation distance of 135 m by
using data from eight occasions (Table S4, Supplemental
Material). Our highest density estimate was for northern
mockingbird Mimus polyglottos on SAV (87 individuals
per km2, SE ¼ 2.8) based on nearly 4,000 site-specific
observations from eight occasions within an average

Table 2. Number of species for which our sample sizes met our criteria for estimating the state variables of regional occupancy (W),
local occupancy (h), and density (D), and number of species on each study site for which we predict a 50% decline in 25 y and a 30%
decline in 10 y could be detected with a power of 0.90 for each state variable with four or all eight occasions. We collected data at 60
points over five transects at the El Sauz (ELS) site and 300 points over 25 transects at the San Antonio Viejo (SAV) site in South Texas,
USA, in 2015 and 2016.

No. of species

ELS SAV

Four occasions Eight occasions Four occasions Eight occasions

W h D W h D W h D W h D

Met minimum criteriaa 27 27 25 34 34 31 33 33 30 42 42 34

Achieved power ¼ 0.9

50% decline in 25 y 17 19 9 29 33 12 29 28 26 36 37 30

30% decline in 10 y 12 5 0 18 11 0 26 18 9 27 24 10

a Criteria for estimating W and h included a minimum of 60 observations from both sites with �15 observations from the site of interest in a single

year. Criteria for estimating D were similar but required a minimum of 100 total observations.

Rigorous Monitoring for Bird Assemblages J.A. Baumgardt et al.

Journal of Fish and Wildlife Management | www.fwspubs.org December 2019 | Volume 10 | Issue 2 | 485



truncation distance of 117.5 m between our two study
sites (Table S1, Supplemental Material).

Power
Use of data from a single observer resulted in sufficient

data to detect a 50% decline over 25 y in W for 17
species, in h for 19 species, and in density for nine
species on ELS with a power of 0.90 (Tables 2 and 3). Our
results suggested this same level of effort should allow
for the same sensitivity to detect this decline in W for 29
species, in h for 28 species, and in density for 26 species
on SAV. We predicted that doubling the field effort to
include a second observer would allow for the detection
of a 50% decline over 25 y in W for 29 species, in h for 33
species, and density for 12 species on ELS, and in W for
36 species, in h for 37 species, and density for 30 species
on SAV with a power of 0.90. Increasing our sensitivity to
the ability to detect a 30% decline over 10 y results in an
approximate 25% decline in species we predicted this
would be achieved for monitoring W, a 50% decline in
species for monitoring h, and a 75% reduction in species
for monitoring density (Tables 2 and 3). We predicted
that 10 species could be monitored with eight occasions
and 9 species with four occasions for density on SAV at
this higher sensitivity, but no species could be monitored
for density with an expected power of 0.90 at this higher
sensitivity on ELS with either level of effort.

Discussion

Our results showed that by using a multiscale
monitoring design that incorporates multiple point
counts at each sampling location, the state variable of
occupancy at two spatial scales can be used to monitor
potentially a large number of species with diverse life
histories (Tables S1–S4, Supplemental Material). In addi-
tion, we showed that by recording distance estimates for
each observation, density may also be estimated,
providing data for an additional state variable that can
also be used for monitoring populations for many of
these species with a single field protocol. We believe the
additional ability to detect changes in density over time
will improve the sensitivity to impacts of a monitoring
program that otherwise focuses on occupancy, thus
justifying the minor additional effort required.

Precision of occupancy estimates depend on the
detection probability in that higher detection probabil-
ities necessarily result in larger numbers of observations
for a given occupancy rate. Similarly, species with higher
true occupancy will also result in a greater number of
observations than for species with low occupancy, given
a similar detection probability. Much work has been
done to examine the trade-offs between the number of
locations sampled and the number of visits to each
location for the range of potential detection probabilities
and occupancy rates relative to the precision of resulting
occupancy estimates (Field et al. 2005; MacKenzie et al.
2006; Bailey et al. 2007). However, these design
considerations can only be optimized for a single species
or groups of species with similar occupancy and

detection probabilities, and to our knowledge, no similar
analysis of trade-offs has been conducted for the
multiscale framework we used. Nevertheless, our effort
and study design were sufficient for estimating occu-
pancy at both spatial scales with high enough precision
to monitor a large number of diverse species of birds.

Our use of the multiscale occupancy model likely
required a larger sample size and certainly a more
complex sampling design and analysis than a simple,
single-scale model. We argue the information gained is
worth the additional effort and complexity. Management
activities can take place at local and regional scales,
where climate change occurs at broad spatial extents.
Estimating occupancy at two spatial scales allows for the
opportunity to link population responses to changing
conditions at both local and regional scales that would
not be possible with a simple occupancy model
(Pavlacky et al. 2012). For example, using occupancy
modeling to detect changes in species’ distributions that
would be expected from climate change requires
sampling at a regional scale; yet, we would not expect
this scale of sampling to be sensitive to changes in the
local density of a species that may result from some
management action.

It is important to point out that interpretation of local
occupancy depends on the spatial and temporal scale of
sampling relative to the typical home range size,
movement patterns, and phenology of each species. In
our example, we would expect h to have good sensitivity
for detecting changes in local density for many passerines
in our study; however, this would not be an appropriate
interpretation for species with relatively large movement
patterns such as wild turkeys. For such species, changes
in h may be indicative of changes in movement patterns
and should be interpreted accordingly.

Estimating density with distance sampling requires
greater effort than estimating occupancy to reach a
similar level of precision (MacKenzie et al. 2002), which
explains why we predicted we would be able to reach
our sensitivity targets for more species monitoring
occupancy at either scale than density. Buckland et al.
(2001) recommended a minimum of 10–20 sampling
points should be used for distance sampling, but they
warned that more will be necessary to generate a reliable
estimate of the encounter rate variance if individuals are
patchily distributed. Thus, our use of 60 and 300
sampling points at ELS and SAV, respectively, was likely
sufficient. In addition, the number of observations to
achieve precise estimates of density from point counts is
suggested to be at least 60–100 by Rosenstock et al.
(2002) and at least 75–100 by Buckland et al. (2001).
These recommendations are greater than those from
surveys using transects because distances farther from
the observer effectively survey larger areas with point-
based surveys than with transects; observations farther
from the observer are associated with lower detection
probabilities and thus are less useful for fitting the
detection function (Buckland et al. 1993). Our estimates
of density for many datasets used a truncation distance
of ,100 m, which excluded all observations made from
greater distances from our analysis, reducing the
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effective sample size (Tables S1–S4, Supplemental Mate-
rial). Although observations recorded at distances .150
m were not used to estimate density for most species in
our dataset, we recommend collecting data out to 200
m. Some species in our datasets, such as eastern
meadowlark Sturnella magna, consistently had estimated
detection probabilities . 0.15 at 150 m with a resulting
truncation distance of 165 m. In addition, observations
beyond the truncation distance for distance sampling
remain useful for estimating occupancy. Finally, obser-

vations between 150 and 200 m represented less than
4% of all our observations; collecting these data required
minimal additional effort.

Our predicted power for monitoring changes in
density was surprisingly low for certain species, despite
large sample sizes (.200) within the truncation distance
(Tables S1–S4, Supplemental Material). This poor preci-
sion suggests high, unmodeled variation in the detection
function. Marques et al. (2007) suggested including
vegetation type characteristics of individual sampling

Table 3. Species which we predict we could detect a 50% decline in 25 y (*) or a 30% decline in 10 y (**) in regional occupancy (W),
local occupancy (h), or density (D) with power¼0.90 on the El Sauz site (ELS) or the San Antonio Viejo site (SAV) in South Texas, USA,
by using four occasions or all eight occasions from data collected in 2015 and 2016.

Common name Species

Four occasions Eight occasions

ELS SAV ELS SAV

W h D W h D W h D W h D

Ash-throated flycatcher Myiarchus cinerascens ** * * ** * ** ** *

Audubon’s oriole Icterus graduacauda * *

Barn swallow Hirundo rustica * * * *

Brown-crested flycatcher Myiarchus tyrannulus * * * * ** * ** * *

Black-crested titmouse Baeolophus atricristatus * ** ** * * ** ** *

Bewick’s wren Thryomanes bewickii * ** ** ** ** * ** ** **

Brown-headed cowbird Molothrus ater ** * ** ** * ** ** * ** ** *

Black-throated sparrow Amphispiza bilineata ** ** * ** ** **

Bullock’s oriole Icterus bullockii * * *

Cactus wren Campylorhynchus brunneicapillus ** * * ** ** *

Cassin’s sparrow Peucaea cassinii ** ** ** * * ** ** **

Curve-billed thrasher Toxostoma curvirostre ** * * ** ** *

Clay-colored sparrow Spizella pallida * *

Chihuahuan raven Corvus cryptoleucus ** * ** * *

Common ground-dove Columbina passerina ** ** * ** ** *

Couch’s kingbird Tyrannus couchii ** * ** ** * ** *

Common nighthawk Chordeiles minor *

Dickcissel Spiza americana * * * * * *

Eastern meadowlark Sturnella magna ** * ** * *

Golden-fronted woodpecker Melanerpes aurifrons ** ** ** ** ** * ** ** **

Green jay Cyanocorax yncas ** * ** * * * * ** * *

Greater roadrunner Geococcyx californianus * ** ** * * * ** ** *

Great-tailed grackle Quiscalus mexicanus * *

Hooded oriole Icterus cucullatus * *

Laughing gull Leucophaeus atricilla ** * * ** ** *

Lark sparrow Chondestes grammacus ** ** * * ** * ** ** *

Long-billed thrasher Toxostoma longirostre ** *

Ladder-backed woodpecker Picoides scalaris * ** * * * ** ** *

Lesser nighthawk Chordeiles acutipennis * *

Mourning dove Zenaida macroura ** ** * ** ** ** ** ** * ** ** **

Northern bobwhite Colinus virginianus ** ** * ** ** ** ** ** * ** ** **

Northern cardinal Cardinalis cardinalis ** * * ** ** ** ** ** * ** ** **

Northern mockingbird Mimus polyglottos ** ** * ** ** ** ** ** * ** ** **

Olive sparrow Arremonops rufivirgatus ** * * * ** * ** ** * * ** *

Painted bunting Passerina ciris * * ** ** ** * * ** ** **

Pyrrhuloxia Cardinalis sinuatus ** ** ** ** ** ** **

Red-winged blackbird Agelaius phoeniceus * ** * *

Scaled quail Callipepla squamata * *

Scissor-tailed flycatcher Tyrannus forficatus ** ** * ** ** * ** ** * ** ** *

Vermilion flycatcher Pyrocephalus rubinus * *

Verdin Auriparus flaviceps ** ** * * * ** ** *

Western meadowlark Sturnella neglecta ** *

White-eyed vireo Vireo griseus * * * * ** * ** ** *

Wild turkey Meleagris gallopavo ** * *

White-winged dove Zenaida asiatica * * * *

Yellow-billed cuckoo Coccyzus americanus * * ** ** * * ** * ** ** *
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locations as covariates in multiple-covariate distance
sampling to improve precision of estimates, particularly
with point-based sampling such as ours. We did not
consider covariates other than study site (SAV or ELS) in
our initial evaluation of the method to stay focused on
our primary study goal; incorporating environmental
parameters would have substantially complicated the
analyses presented herein given the large number of
species on which we collected data. Burnham et al.
(2004) showed that distance sampling is robust to
pooling data from multiple detection functions. Thus,
although our estimates for certain species were impre-
cise, we do not suspect any unmodeled variation relating
to vegetation type resulted in biased estimates of
density. We consider our power estimates for monitoring
density to be conservative and likely would be improved
upon with the inclusion of meaningful site covariates,
depending on the goals of a particular study.

Our method of estimating density from both visual
and aural observations combined may not be appropri-
ate for all species in our study. It is likely that the true
detection function for visual observations differs from
that for aural observations. If this is the case, including
both and attempting to fit a single detection function to
the data will result in reduced precision in density
estimates. Because visual observations tend to be made
closer to the observer than aural observations, it would
not be appropriate to use whether an individual was
seen or not as a covariate in multiple-covariate distance
sampling (Marques et al. 2007). Furthermore, if only a
portion of the population can be assumed to be
available for one of the forms of detection (e.g., a
species for which only males are expected to sing or call
during the breeding season), combining both may result
in a biased estimate of density (i.e., the estimate may
represent something other than 100% of the statistical
population). Buckland et al. (2006) recommend limiting
observations to aural detections and possibly only
detections of singing males to estimate the male
segment of the population; however, this requires
additional consideration and assumptions because for
some species, unmated males sing more than mated
males and singing rate may vary significantly through
the breeding season. Our method of data recording
precluded us from estimating detection functions
separately for each detection type. We recommend
others considering using their data to estimate density
with distance sampling to record whether each individ-
ual was observed visually, aurally, or both, and if aurally,
whether by song or other. This will allow estimation of
detection probability separately for each detection type
such that appropriateness of combining observations
can be evaluated. Furthermore, if it is determined that
the sources of observations should not be combined,
these results can be used, along with assumptions of
availability, to determine which observation type(s)
should be used for estimating density. Although the
methods we used may have resulted in some of our
density estimates being biased, we do not believe this
bias would impact our estimated power to detect our
stated population changes. However, further consider-

ation would be necessary to accurately define the
statistical population being monitored.

Our results show that there is no single optimal level
of effort for all situations and that the return on
increasing effort varies by study area, species, and state
variable being monitored. Our doubling of effort by
using two observers, increasing our total occasions of
data collection for each location from four to eight,
improved our estimated power for monitoring occupan-
cy at both scales and for monitoring density. This 100%
increase in effort generally resulted in much less than a
100% increase in the number of species that we
predicted could be monitored at one of the specific
sensitivity levels with a power of 0.90. The greatest
increase we saw was for the smaller ELS dataset, where
the predicted number of species that could be moni-
tored to detect a 50% decrease over 25 y in W and h
increased by ~70% and in density increased by 33%.

Our work shows it is possible to monitor multiple state
variables for numerous species within a complex bird
assemblage by using a simple field protocol. The amount
of effort necessary to meet the monitoring objectives
depends on a number of factors, including the stated
level of sensitivity. Our findings illustrated that increasing
the sensitivity requirements of a monitoring program
reduces the number of species that could be monitored
with a specific power and amount of effort. Put another
way, increasing the sensitivity requirements will increase
the required precision of estimated state variables for
any given species and thus increase the minimum
amount of data needed.

Management implications
For those interested in implementing a long-term

monitoring program that is sensitive to changing
conditions at local and regional scales, we suggest
considering multiscale occupancy and density monitor-
ing for multiple species of birds such as we have
presented herein. The methods we outline may repre-
sent a modest increase in the data that managers
currently collect; yet, they should result in a monitoring
program that is substantially more sensitive to environ-
mental stressors. Our study design involved conducting
point counts with a two-scale sampling scheme:
sampling over multiple, repeat occasions, with multiple
observers, or with both; and collecting distance esti-
mates for each observation. The species for which we
found it feasible to monitor in our study should prove
sensitive to broad implications of a wide range of
potential stressors, given the diverse life histories
represented by the group (Table 3). Thus, a study such
as ours should have the potential to meet a variety of
monitoring objectives.

The amount of required effort to meet a program’s
objectives will also depend on factors such as population
sizes and detection probabilities of species of interest as
well as the size and spatial heterogeneity of the
monitoring area of interest. For these reasons, it is
imperative that managers begin with a pilot study to
determine required effort and ensure adequate number
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of sampling sites, number of subsampling locations, and
number of replicate visits to each sampling location are
used. Such planning can greatly reduce the possibility of
wasting resources on monitoring programs that fail to
meet objectives.

The designs we presented herein were not developed
for monitoring a particular focal species; they were
designed to maximize the number of species for which
significant changes in populations over specific time
periods would be detected. Point counts, as we suggest
for a long-term monitoring program, are an ideal tool for
collecting population state data for a large number of
bird species. However, using point counts in the
sampling designs we outlined herein may not be an
adequate method for monitoring rare species simply
because sample sizes necessary for desired sensitivity
levels are usually not reached. Should it become
desirable to attain greater monitoring sensitivity for
focal species (e.g., rare species or game species such as
the wild turkey), we would recommend using focused
studies such as spot mapping and nest monitoring
(Ralph et al. 1993). We suggest that a monitoring
program with a broad scope, such as the program we
have presented herein, be used to identify populations
that are declining or are otherwise rare for which focused
studies can then be implemented.
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Table S1. Average sample sizes and estimates of
regional occupancy (W), local occupancy (h), and density
(N/km2) for a single year from data collected on the San
Antonio Viejo study site in South Texas in 2015 and 2016
by using two observers and four replicate visits. The
complete sample size is denoted as N, where Ns indicates
the sample size for the specific study site. Trunc is the
truncation distance used for estimating the detection
function for distance sampling, Nt is the number of
observations from both sites made within the truncation
distance, and Nts is the number of observations from the
specific site made within the truncation distance.
Estimated power to detect a 50% decline in 25 y in
occupancy or density is indicated by P25; estimated
power to detect a 30% decline in 10 y is indicated by P10.
Species with an observed 100% occupancy at either scale
were assigned a standard error of 0.

Found at DOI: https://doi.org/10.3996/042019-JFWM-
027.S1 (67 KB DOCX).

Table S2. Average sample sizes and estimates of
regional occupancy (W), local occupancy (h), and density
(N/km2) for a single year from data collected on the San
Antonio Viejo study site in South Texas in 2015 and 2016
by using a single observer and four replicate visits. The
complete sample size is denoted as N, where Ns indicates

the sample size for the specific study site. Trunc is the
truncation distance used for estimating the detection
function for distance sampling, Nt is the number of
observations from both sites made within the truncation
distance, and Nts is the number of observations from the
specific site made within the truncation distance.
Estimated power to detect a 50% decline in 25 y in
occupancy or density is indicated by P25, estimated
power to detect a 30% decline in 10 y is indicated by P10.
Species with an observed 100% occupancy at either scale
were assigned a standard error of 0.

Found at DOI: https://doi.org/10.3996/042019-JFWM-
027.S1 (67 KB DOCX).

Table S3. Average sample sizes and estimates of
regional occupancy (W), local occupancy (h), and density
(N/km2) for a single year from data collected on the El
Sauz study site in South Texas in 2015 and 2016 by using
a single observer and four replicate visits. The complete
sample size is denoted as N, where Ns indicates the
sample size for the specific study site. Trunc is the
truncation distance used for estimating the detection
function for distance sampling, Nt is the number of
observations from both sites made within the truncation
distance, and Nts is the number of observations from the
specific site made within the truncation distance.
Estimated power to detect a 50% decline in 25 y in
occupancy or density is indicated by P25; estimated
power to detect a 30% decline in 10 y is indicated by P10.
Species with an observed 100% occupancy at either scale
were assigned a standard error of 0.

Found at DOI: https://doi.org/10.3996/042019-JFWM-
027.S1 (67 KB DOCX).

Table S4. Average sample sizes and estimates of
regional occupancy (W), local occupancy (h), and density
(N/km2) for a single year from data collected on the El
Sauz study site in South Texas in 2015 and 2016 by using
two observers and four replicate visits. The complete
sample size is denoted as N, where Ns indicates the
sample size for the specific study site. Trunc is the
truncation distance used for estimating the detection
function for distance sampling, Nt is the number of
observations from both sites made within the truncation
distance, and Nts is the number of observations from the
specific site made within the truncation distance.
Estimated power to detect a 50% decline in 25 y in
occupancy or density is indicated by P25; estimated
power to detect a 30% decline in 10 y is indicated by P10.
Species with an observed 100% occupancy at either scale
were assigned a standard error of 0.

Found at DOI: https://doi.org/10.3996/042019-JFWM-
027.S1 (67 KB DOCX).

Data S1. Species observations for point counts
conducted on the San Antonio Viejo (SAV) and El Sauz
(ELS) study sites in South Texas in 2015 and 2016 by two
observers (randomly assigned A or B). Observation
distances are in meters, and four-letter species codes
are according to the American Ornithological Union’s list
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of bird species in the North and Middle America
Checklist, 7th edition (www.checklist.aou.org).

Found at DOI: https://doi.org/10.3996/042019-JFWM-
027.S2 (2.45 MB XLSX).

Reference S1. Ralph CJ, Gueple GR, Pyle P, Martin TE,
DeSante DF. 1993. Handbook of field methods for
monitoring landbirds. General Technical Report PSW-
GTR-144-www. Pacific Southwest Research Station, Albany,
California: U.S. Department of Agriculture Forest Service.
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